应用数学学院
当前位置: 首页 >> 新闻动态 >> 正文
数学之美(八)—— 用彭罗斯瓷砖填满无限
文章来源: 作者: 发布时间:2023-04-22 21:28 点击数:

数学之美

用彭罗斯瓷砖填满无限

作为自然科学的基础、工程技术的先导、国民经济的工具,“数学”曾经被伽利略称为“书写宇宙的语言”,其所用的文字是三角形、圆和其他几何图形。

古往今来,数学美一直是一个值得探讨的话题。数学的简洁性、抽象性、和谐性、奇异性等诸方面均展现着自身的美,数学也正是在不断追求完美的过程中孕育、创造并发展的。

彭罗斯瓷砖

用“彭罗斯瓷砖”填满无限数学中“用有限来填满无限”是一个有趣的话题。20世纪70年代,英国物理学家(也是有时把数学作为娱乐消遣的数学家)彭罗斯开始有兴趣研究在同一张平面上用不同的瓷砖铺设的问题。

1974年,当他发表结果时,人们都大吃一惊。文中他确定了三类这种瓷砖(下称彭罗斯瓷砖),第一类两种分别为风筝形和镖形,它们是由同一个菱形剪出的;第二类是由边长相同、胖瘦不一的两种菱形组成的(有趣的是它们的面积比恰为0.618);第三类则由正五边形、菱形、五角星形、黄冠形四种图形组成。

这种瓷砖的奇妙之处在于:用它们中的每一类皆可无重叠又无缝隙地铺满平面,同时铺设结构不具“平移对称性”,也就是说,从整体上看图形不重复。

更为奇妙的是,利用彭罗斯瓷砖进行铺砌时,还可从铺砌的图形中找出上述瓷砖自身的放大“克隆”。

“彭罗斯瓷砖”最初的价值更多体现于实用美学,但后来人们终于发觉,这种镶嵌的三维形式正是物质的新形态基元,现代晶体学所热衷于探讨的“准晶体”便需要借助于“彭罗斯点阵”的思想方法来构造。


学院微信公众平台

地址:吉林省长春市净月大街3699号
吉林财经大学应用数学学院 版权所有 Copyright © 2018