应用数学学院
当前位置: 首页 >> 新闻动态 >> 正文
数学之美(十三)——正态分布
文章来源: 作者: 发布时间:2023-05-14 19:12 点击数:

数学之美

有人天真的认为我们的世界在很多领域经常发生极端事件,在一些领域中也许存在这样特别极端的例子,但是,其实很大一部分领域,极端现象都非常少,就像世界上没有身高15米的人一样,因为我们的世界大部分事物服从正态分布。

正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布之所以被称为正态,是因为它的形态看起来合乎理想。在现实生活中,遇到测量之类的大量连续数据时,你”正常情况下”会期望看到这种形态。正态分布也被称钟形曲线(因为它看起来像一个钟),就像我们在大自然中经常看到的那样,它有点神奇。例如,身高、体重、血压、测量误差、智商得分等都服从正态分布。

主要特征

正态分布曲线

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μσ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。

2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

4、正态分布有两个参数,即均数μ和标准差σ,可记作Nμσ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。

5u变换:为了便于描述和应用,常将正态变量作数据转换。  

德国马克和纪念币上的高斯头像和正态分布曲线

在科学领域,冠名权那是一个很高的荣誉。2002年以前去过德国的兄弟们还会发现,德国1991年至2001年间发行的的一款10马克的纸币上印着高斯的头像和正态密度曲线,而1977年东德发行的20马克的可流通纪念钢铺上,也印着正态分布曲线和高斯的名字。正态分布被冠名高斯分布,我们也容易认为是高斯发现了正态分布,其实不然,不过高斯对于正态分布的历史地位的确立是起到了决定性的作用。

总之,正态分布论是科学的世界观,也是科学的方法论,是我们认识和改造世界的最重要和最根本的工具之一,对我们的理论和实践有重要的指导意义。以正态哲学认识世界,能更好的认识和把握世界的本质和规律,以正态哲学来改造世界,能更好的在尊重和利用客观规律,更有效的改造世界。


学院微信公众平台

地址:吉林省长春市净月大街3699号
吉林财经大学应用数学学院 版权所有 Copyright © 2018